

Experimental Study of Cement Mortar-Steel Fiber Reinforced Rammed Earth Wall

Miao Pang
Associate Professor, PHD
Department of Civil Engineering
Zhejiang University, PR China
pm@zju.edu.cn

Oct. 2011

Main Contents

- Background
- Introduction of Rammed Earth
- Numerical Analysis by FEM
- Experimental study
 - Wall Model Design
 - Loading System and Data Collection
 - The CMSF Reinforcement
 - Test Results and Analysis
- Conclusions

1. Background

Snow and frozen rain disaster 2008, South China

Houses destroyed /Severely damaged

2. Introduction of Rammed Earth

2.1 Examples of Rammed Earth Structure

Tulou in Fujian

Peifeng Pagoda, Qing Dynasty

Old houses in Guangdong

2.2 Applications in Ancient China

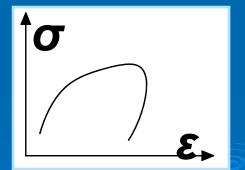
Straight Highway of Empire Qin

Jiaoshan emplacement, Jiangsu

Tongwan Castle, Shaanxi
The Northern and Southern Dynasties

Coffin in the Tomb, Guangxi

2.3 Advantage of Rammed Earth Material


>Low-carbon property

➤ Convenient availability

➤ Good mechanical characteristic

≻Economical

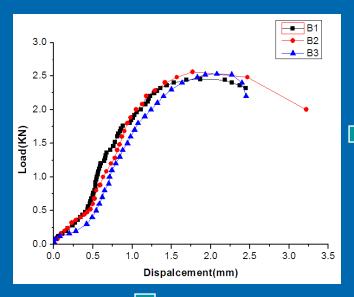
2.4 Composition of Rammed Earth

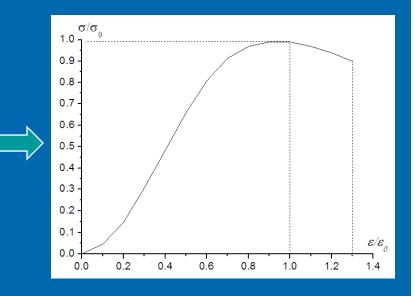
3. Numerical Analysis

3.1 Similarity Principle

	Practical	Model	Similarity Constant
Height	3000mm	1500mm	$S_H = 1/2$
Width	4000mm	2000mm	$S_B = 1/2$
Thickness	240mm	240mm	$S_T = 1$
Ultimate Stress	$\sigma_{_p}$	$\sigma_{\scriptscriptstyle m}$	$S_{\sigma}=1$
Ultimate Capacity	F_{p}	$F_{\scriptscriptstyle m}$	$S_F = S_{\sigma} S_{\mathcal{B}} S_T = 1/2$

3.2 Material Parameters

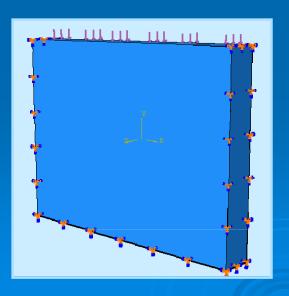

Sample	Length (mm)	Failure load (KN)	Compressive strengths (Kpa)	Mean value (Kpa)
B1	70	2.45	500	
В2	71	2.56	522	512.7
В3	71	2.53	516	


Water content w%	Dry density $\rho_d(\text{kg/m}^3)$	Cohesion (Kpa)	Friction angle (°)
19.5	1780	110.54	14.9

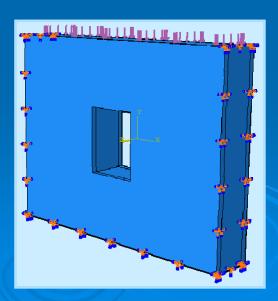
3.3 Constitutive Model

Least Square Method

$$\frac{\sigma}{\sigma_0} = 3\left(\frac{\varepsilon}{\varepsilon_0}\right)^4 - 8.78\left(\frac{\varepsilon}{\varepsilon_0}\right)^3 + 7.33\left(\frac{\varepsilon}{\varepsilon_0}\right)^2 - 0.62\left(\frac{\varepsilon}{\varepsilon_0}\right)$$



3.4 Numerical Analysis

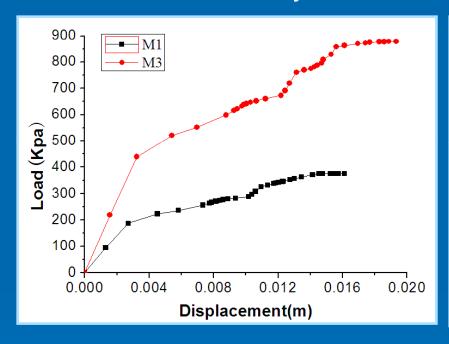

Parameters of the wall models

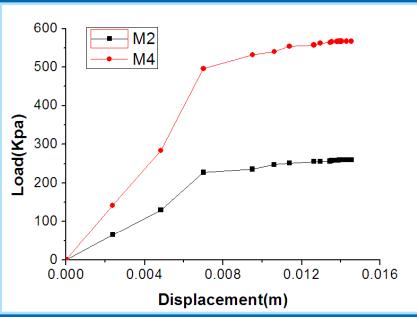
Model	$Height {\times} Width {\times} Thickness$	Window hole	Cement mortar in reinforcement
M1	$1500 \times 2000 \times 240 \text{mm}^3$	none	none
M2	$1500 \times 2000 \times 240 \text{mm}^3$	$400{\times}500mm^2$	none
М3	$1500 \times 2000 \times 240 \text{mm}^3$	none	40mm(two sides)
M4	$1500 \times 2000 \times 240 \text{mm}^3$	$400{\times}500mm^2$	40mm(two sides)

M1


M4

3.5 Numerical Results and Analysis


Von Mises stress of the four models



3.6 Numerical Results and Analysis

Finite element analytical results before and after reinforcement

Model description	Ultimate bearing capacity	Ultimate bearing capacity	Increasing
Model description	before reinforcement (Kpa)	after reinforcement(Kpa)	percentage (%)
Single wall	375	878	134
Wall with window hole	260	567	117

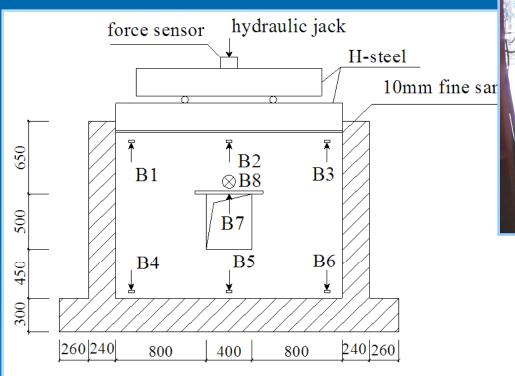
4. Experimental study

4.1 Wall Model Designing

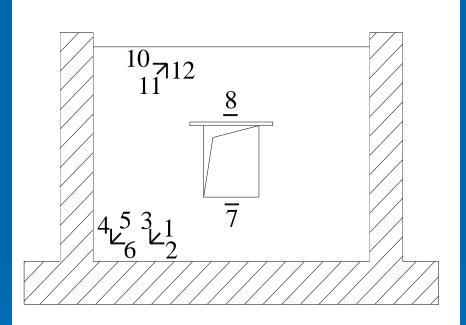
Walls	Sand:Soil:Lime	Height*Width*Thickness	Window Hole
W1	3:1:0.6	1500*2000*240mm ³	0
W2	3:1:0.6	1500*2000*240mm ³	1
W3	3:1:1	1500*2000*240mm ³	0

Note: The proportion in the table is measured in mass

General configuration of the experimental device

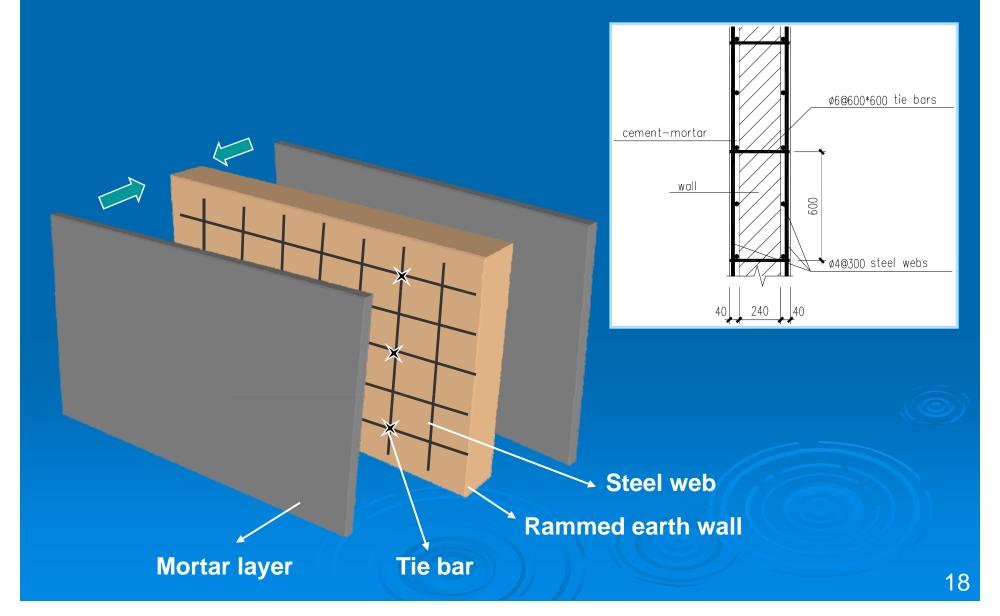

4.2 Loading System

4.3 Data Collection



Dial gauges

4.3 Data Collection



Strain rosettes

4.4 Cement Mortar-steel Fiber Reinforcement

4.5 Failure Characteristics

Before reinforcement:

For W1

Crack in the upper boundary

Crack grows rapidly

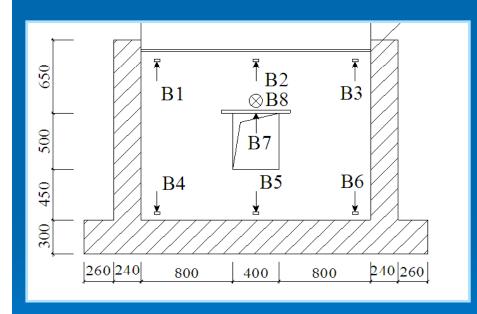
For W2, W3

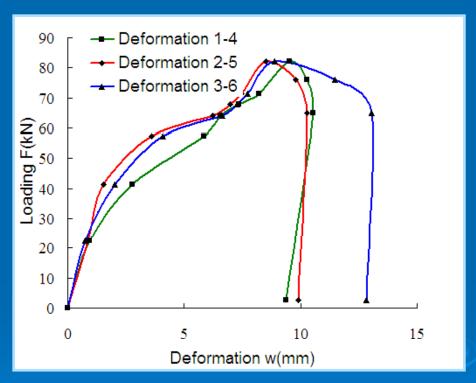
Cracks on both sides of the upper corner

Separation from the frame

4.5 Failure Characteristics

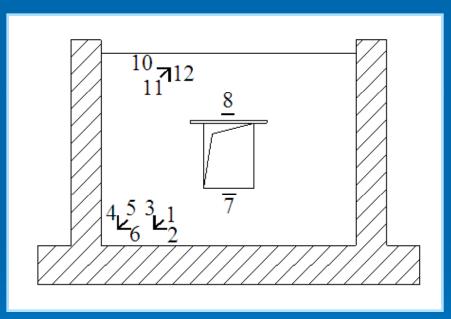
After reinforcement:

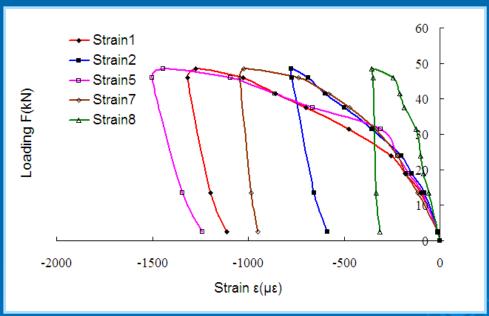

Cohesive failure of the rammed earth wall



Separation to the original wall

4.6 Strain and Deformation Analysis




Distribution of Dial Gauges

Loading-Deformation Curve of W3

4.6 Strain and Deformation Analysis

Distribution of Strain Rosettes

Loading-Strain Curve of W2

4.7 Test Results

Walls	Cracking load (kN)	Ultimate bearing capacity (kN)	Raising in ultimate bearing capacity (%)
W1	30	30	-
W1'	38	112	373%
W2	13	36	-
W2'	80	110	306%
W3	55	90	-
W3'	69	94	104%

5. Conclusions

- **♦** Cement mortar-steel fiber reinforcement is effective to improve the ultimate bearing capacity of rammed earth wall.
- ♦ Lime helps to improve the strength of rammed earth wall.
- Boundary conditions affects the final results on the ultimate bearing capacity of the model.
- ♦ The separation of mortar layer from the original wall is due to rammed earth cohesive failure.
- ♦ The FEM results are expected to compare with the test results of the corresponding scaled model, and further studies are expected.

Thank you!